

DSP-BASED QUASI-LINEAR CONTROL OF A 1.5 kW THREE-PHASE THREE-LEVEL BOOST-TYPE THREE-PHASE VIENNA RECTIFIER

BY: NESRINE BEL HAJ YOUSSEF

Ph-D STUDENT, RESEARCH GROUP IN POWER ELECTRONICS AND INDUSTRIAL CONTROL (GREPCI)

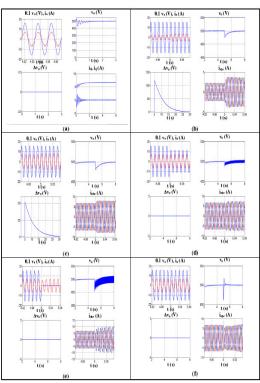
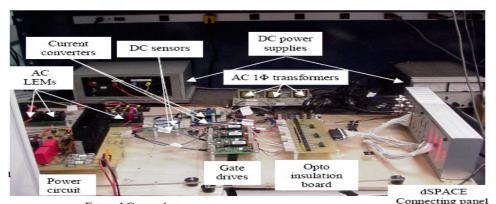
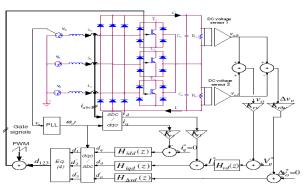
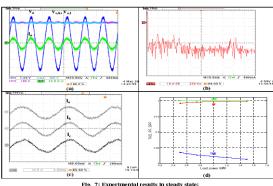
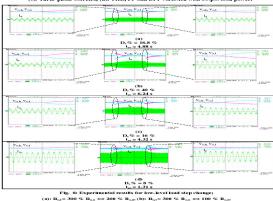
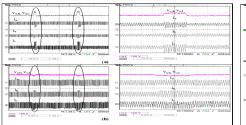
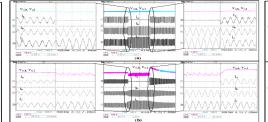





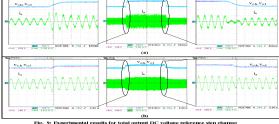
Fig. 4: Simulation results; (a): steady state, (b, c): R_{cd} step change respect, 300 % $R_{cn} \Leftrightarrow$ 100 % R_{cn} $R_{al} = 100 \% R_{o,n} \Leftrightarrow 60 \% R_{o,n}$ (d): 27 % V_a dip, (e): phase a disconnexion, (f): 500 % line impedance



From AC supply




(a): phase a voltage and current, output DC voltages, (b); harmonic spectrum of current (c): Three-phase currents, (d): THD, PF and DPF variation with output load power.



(a): $R_{n,l}$ = 300 % $R_{n,n}$ \Leftrightarrow 200 % $R_{n,m}$ (b): $R_{n,l}$ = 300 % $R_{n,n}$ \Leftrightarrow 100 % $R_{n,n}$ (c): $R_{n,l}$ = 100 % $R_{n,n}$ \Leftrightarrow 60 % $R_{n,n}$

(a): 27 % v_n dip, (b): 27 % v_s swel

