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We connect to the Van der Pol’s equation an appropriate feedback loop which unfolds a wide
range of dynamic behavior. The bifurcation diagrams reveal the rise, then the extinction of
the chaos bubble. Moreover, the numerical computations display an antisymmetric strange
attractor with morphological plasticity by the variation of the sole feedback control parameter.
This chaotic 3D system is built to found an heuristic model of economic cycles focused on the
capital flight observed in the less developed countries. The model exhibits the ability of the

potential GDP to drive the growth dynamic.

1. Introduction

The equation of Van der Pol [1926] constitutes an
eminent model to analyze the dynamic behavior of
(self) excited oscillations. Several authors have well
studied the outcome of a T-periodic forcing func-
tion [Parlitz & Lauterborn, 1987] and a scalar bias
[Thompson & Stewart, 1988] in the Van der Pol’s
equation (VdPe).

In this paper, we investigate the next step of
this methodology. Indeed, we study the outcome
of a retroactive loop determined by the state vari-
ables of VdPe itself. This connection establishes
a full feedback linkage and allows homoclinicity
which may lead to a route to chaos [Nicolis, 1995;
Lakschmanan & Murali, 1996]. One would expect
a similar behavior in our application.

In Sec. 2, we study numerically the behavior of
the (electrical) VdPe connected with a particular
feedback circuit and its dynamical characteristics.
We determine (1) the bifurcation diagrams by vary-
ing the control parameter of the feedback in order

to detect its global effect; then, we identify (2) the
chaotic attractors and their nature. The new sys-
tem lays the foundation of heuristic modelization of
economic cycles (Sec. 3) by the relevance of the sav-
ing behavior to the potential Gross Domestic Prod-
uct in the Less Developed Countries (LDC). Hence,
in Sec. 4, we indicate the piecewise curve of the
“physical” model and the findings of our economic
model to the development policy.

2. The Model

Written in two first-order ordinary differential equa-
tions, the VdPe is connected to a feedback function
(z-equation) controlled by a parameter s. It is as-
sumed that the additional (linear) ordinary differ-
ential equation which represents the perturbation
founds a new 3D system. The set of the three first-
order coupled equations (k, i, b, s, p and ¢: positive
parameters):

dr 2
= = kv +pzb—v7) (1)
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dy
% =7 + sz (2)
dz
il S (3)

defines stationary equilibria obtained for dz/dt =
dy/dt = dz/dt = 0.

We get z = z/s from Eq. (2), y = z(p/q) from
Eq. (3) and z = ky/u(y? — b) from Eq. (1).

The last two equalities yielded the following
polynomial relation: z3(p/q)%u—(ub+k(p/q))x = 0.

The three roots are: 23 = 0, T3 =

[ub + k(p/9))/[(p/q)*1]'/? and z3 = —[ub +
k(p/9))/l(p/9)*u)*/>.

Let [ub + k(p/9))/[(p/9)?n]}/* = a, the
three equilibria become: FEi(z,y, z) = (0, 0, 0),
EZ(:E’ Y, Z) = (aa (p/q) ©a, (1/3) : a) and

E3(‘Ta Y, z) = (_a1 —(p/q) ' Q, _(1/5) ’ a)‘
E, and E3 are antisymmetric.
On the other hand, the Jacobian matrix is:

ub—y*) k+2uzy 0
J(z,y, 2) = -1 0 s
P —q 0

Hence, we obtain |J| = sp(k + 2uxy) +
squ(b — y*)

For a particular specification Py: (k, p, b, p,
q) = (0.02, 0.4, 0.2, 10, 0.1), E; is unstable since
|J| = (pk + qub)s = 0.208s > 0, for any (positive)
value of control parameter s.

The two other equilibria, for instance at s =
0.2, E; = (0.02, 2.28, 0.11) and E3 = —FE3 are also
unstable since [J| = 0.105 > 0.

The total number of diagonal items of J ma-
trix is Tr(J) = 0.4 (0.2 — y?) which shows that the
model is conservative for the trajectories that are
close to the solutions E;, E; and Ej3, but the flow
is dissipative for the peripheral orbits (Jy| > 0.447).
For this last case, the contraction of the volume is
equal to exp[0.4(0.2 — y?)] by time unit.

To identify the feedback outcome, the numer-
ical computations are carried out with the fifth-
order Runge-Kutta integration method and accu-
racy (or the unit of time) equal to 107°. All
simulations are started with initial conditions:
(z,y,2) = (0,0.01,0) and the specification of
parameters Fp.

Global bifurcations, blue sky
catastrophe and chaotic behavior

2.1.

For very low values of control parameter s, the
dynamic of the z-variable remains similar to the

! ! I )
T
100 200 300 400

t

Fig. 1. Behavior of the feedback (s = 0). The z-variable
emits a period-2 signal in the case of nonconnection.

case of nonconnection to the VdPe (Fig. 1). Until
s ~ 5.107%, the bifurcation diagrams of the vari-
ables show the persistence of the VdPe limit-cycle
(Fig. 2). Beyond s >~ 107, z-variable follows a dif-
ferent trajectory and dives both the variables z and
y into an unstable zone. As for variable z, it is pro-
jected towards the origin, while y is rejected to a
zone that is outside the limit-cycle.

As s increases further, i.e. for the less weak am-
plification intensity of the feedback, a loss of stabil-
ity of a period-2 solution occurs in the homoclinic
direction (z-axis) leading to stable and unstable
dynamics (Fig. 3).

However, the “blue sky catastrophe” phe-
nomenon occurs since the computed diagrams of y
and 2 variables stop for s ~ 0.004 and do not plot
any more points. Yet, when s ~ 0.008, the diagrams
reoccur. Nevertheless, for a wider s step-size, this
phenomenon is masked.

The VdPe limit-cycle is now supplanted by an
utterly different trajectory associated with the ho-
moclinic bifurcation (Fig. 4).

For very high amplifications of the feedback,
the global bifurcation diagrams show a cascade of
period-halving bifurcations to stability for all vari-
ables; afterwards a “stalling” phenomenon appears
(Fig. 5). The feedback is no more turbulent and
the model acquires an infinitely fixed structure rep-
resented by a stable period-2 solution for s ~ 280.

Nonetheless, the bifurcation diagrams are sen-
sitive to s step-size. Indeed, with the step-size
s = 1074 the obtained diagram takes a different
orientation. The bifurcation towards a higher or
lower branch stems up after an alternation of a
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Fig. 2. Bifurcation diagrams for the Poincaré return map

(s step-size = 107%). At very weak values of s, the limit-
cycle of the state variables of VdPe remains stable, as well
as the motion of the (internal) perturbation. At s~ 6.107%,
(a) z-variable is projected to origin while (b) y-variable and
(c) z-variable are thrown to high values.
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Fig. 3. Blue sky catastrophe. Periodic and chaotic dynam-

ics occur for all variables. The ending of diagrams is observed
only for y and z variables at s = 0.004.
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Fig. 4. Homoclinic bifurcation. For s = 1072, (a) an homoclinic bifurcation appears and exhibits (b} periodic motion.

()

0.04 -

-0.04

Fig. 5. Bifurcation diagrams for the Poincaré return map (s step-size = 10~2). The feedback effect gives a chaotic bubble
but extinguishes at final period-2 solution for (a) x and (b) y state variables. The chaotic motion is observed also for
(c) retroactive z-variable. We notice that the diagrams are not symmetric beyond s ~ 70.
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Fig. 6. Bifurcation trap. Simulation of bifurcation diagram of z started with s step-size = 10~%. Beyond s =~ 70, the
bifurcation in high or low branch is determined by the step-size of control parameter s. This diagram of z shows a bi-
furcation trapping in a high sub-basin of attraction, while, in Fig. 5(a), it is trapped in the lower sub-basin with another

step-size.

high-low sequence. The trajectories follow several
orbits in the high sub-basin before taking the di-
rection of the low sub-basin and vice-versa. The
one ten-thousandth fraction of s is decisive for the
bifurcation where these trajectories are eventually
trapped (Fig. 6). _

On the other hand, in the inside of stabil-
ity windows, several stable period-nT order solu-
tions occur whose phase space follows the cascade

of period-doubling then period-halving bifurcations
(Fig. 7).

Chaotic attractors and the
Lyapunov exponents

2.2,

With a particular value of s parameter, an anti-
symmetric chaotic attractor occurs (Fig. 8) and the
variation of s is enough to produce another chaotic
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Fig. 7. Several periodical solutions. In the periodic windows of bifurcation diagrams, the period order increases then decreases
according to s parameter. (a) Period-6 solution for s = 0.5, (b) period-10 solution at s = 1.5, (c) period-4 solution for s = 215

and (d) period-2 solution at s = 280.

‘attractor with a complex structure (Fig. 9). This
symmetry inversion is created by the mechanism of
[Silnikov, 1965].

Nevertheless, beyond s ~ 70, the Sensitive De-
pendence on s Parameter (SDP) becomes specifi-
cally different as the chaotic attractors lose their
antisymmetry. The basin of attraction is now split
into two sub-basins that are distinct. Thus, the
model produces two attractors (for only one s value)
with an antisymmetric position (Fig. 10). Hence,
the closure of a dynamic in a particular sub-basin
is the result of Sensitive Dependence on Initial Con-

ditions (SDIC). The Poincaré maps reflect this mor-
phological plasticity — according to s — either for
antisymmetric strange attractors or nonsymmetric
ones (Fig. 11).

Simultaneously, the SDIC and SDP induce the
presence of “strange” characteristics [Medio, 1993]
of these chaotic attractors. Besides, for s = 35,
the Lyapunov Characteristic Exponents are posi-
tive: LCE (z, y, 2) = (0.27, 0.65, 0.41).

We derive from this chaotic 3D system a
model of economic cycle suited for heuristic
approach.
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Fig. 8. Strange attractor. A strange attractor occurs with two homoclinic orbits for s = 0.2

(a)

Fig. 9. Complexity of strange attractor. A strange attractor, for s = 35, displayed in three different Euclidian coordinate

representations.
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(c)

Fig. 9. (Continued)
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(b)

Fig. 10. Strange attractors without antisymmetric structure. For s = 150, (a) the strange attractors lose the antisymmetry
structure (no-bridge between the high and low sub-basins). Thus, (b) each sub-basin produces a strange attractor.
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Fig. 11. Poincaré maps. The map is antisymmetric before

s =~ 70, for example (a) s = 58 and nonsymmetric after this
threshold, for instance (b) s = 73. In the last case, the model
gives two Poincaré maps for each s value by antisymmetric
initial conditions.

3. The Economic Model of Cycles

We introduce briefly an economic model of cycles fo-
cused on the capital flight phenomenon observed in
the LDC [Cuddington, 1986]. To build the model,
we keep unchanged the Egs. (1) and (3) written
with economic symbols.

The saving equation is:

das * 2
S =a¥ +p(Y" - Y?)S

where S stands for Saving (households), Y for Gross
Domestic Product (GDP) and Y™ represents the

(1.1)

value of potential GDP (scalar). On the other hand,
a is the variation of the marginal propensity to sav-
ing while p is the ratio of capitalized profit.

According to the life cycle hypothesis [Ando &
Modigliani, 1963; Modigliani, 1988}, the households
will continuously increase the marginal propensity
to saving. The quick extension of life expectancy
[Cutler et al., 1990] and the weak expansion of the
social security [Kimball, 1990] both in LDC rein-
force this tendency.

The potential value of GDP [Okun, 1962] is
measured by a full employment of the industrial
capacities. In this application, Y* demarcates the
upward side from the downward one of the cap-
italized profits. For the LDC, the industry cre-
ation is locked in the traditional comparative advan-
tages. If Y < Y*, there will be a sharp increase of
profit since the activities are not constrained by the
plants. They derive high profits since these sectors
have been just started and their markets are not yet
saturated. When the profits are shared, they will
be re-injected into the financing circuit. The non-
linear specification indicates the braking of profit
withdrawal outside the productive system thereby
driving a better capitalization.

On the contrary, at the neighborhood and be-
yond Y* the threat of inflation appears. Not only
are the shared profits not reinvested, but also the
households will deviate their capital due to the lack
of new investment opportunities. The saving devia-
tion is accelerated in relation with the gap between
the GDP and its potential value.

Besides, the equation of GDP takes the form:

d_Y___(S’—i—F)
dt v

where F is the foreign capital inflow (net) and v the
capital-output ratio.

The capital constitutes the fundamental con-
straint in the development process. Hence, the
GDP is determined by the level of investments.
They are financed by the household’s saving and
by the foreign capital inflows.

On the other hand, the equation of foreign
financing is:

(2.1)

% =mS—-rY,

m stands for capital inflow-saving ratio and r for
debt refund—output ratio.

The capital inflows constitute a complement of

the saving and the capital refund is a constant pro-

portion of output level. This relation is a simplified

(3.1)
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Fig. 12. The behavior of the economic cycle. (a) When

Y™ is fixed, the dynamic of GDP converges to a stationary
cycle for particular initial conditions. (b) If the potential
GDP grows with a constant rate (n = 0.1) then, the fluctu-
ations of GDP are damped and substituted by a sustainable
growth.

account of the international financial movements

of LDC.
Eventually, the path of the potential GDP:

dy*
dt

ne @)

n: is rate of growth.

In our application, we shall specify values
selected from several LDC [Summers & Heston,
1991]. Indeed, the specification of parameters is
C: (a,p,v,m, ) = (0.04, 0.02, 4, 0.3, 0.03) but
the potential GDP shall have the arbitrary initial
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value Y* = 1. Our analysis shall deal with the in-
fluence of the potential GDP (n: control parameter)
on the economic stability.

When Y* is unchanging (n = 0), the dynamic
of GDP is a semi-attractor [Fig. 12(a)]. However,
if n > 0, the stationary cycle or the stagnation of
the GDP could be converted to sustained growth
[Fig. 12(b)]. Moreover, the fluctuations are more
damped if n increases.

Even though, the observed potential GDP se-
ries of wide number of LDC alternates sequences of
stagnation and growth, our application highlights
a significant stylized fact. Without technological
progress of the key-sectors, the households divert
their savings from the productive system. The po-
tential GDP inertia hinders the continuous capital-
ization of profits and the investments are deprived
from substantial financial flows, since the satura-
tion of traditional activities constitutes a motive of
capital flight. The comparative advantage frame-
work based on labor costs is exhausted in the de-
velopment process. The R&D programs and the
sustainable industrial expansion in modern sectors
drive the turning points of the saving cycle, allow
the maintenance of the capitalization of profits and
neutralize the capital flight.

4. Antiequilibrium Feedback

The chaotic 3D system, studied in Sec. 2, leads the
flows around three unstable equilibria. Indeed, the
piecewise curve is nonlinear knowing that the abso-
lute value of the slope at the neighboring of equilib-
ria must be smaller than 1 to report their instability
(Fig. 13). The methodology of antiequilibrium ex-
citation in the extended VdPe, shows the power of a
feedback loop leading to a wide range of dynamics.
The particular feedback does not release an infinite
chaotic expansion (except for the limit case of “blue
sky catastrophe”). Even, if the chaotic bubble is
restricted in a finite interval of s, it does not mean
that the effect of feedback is transitory since the fi-
nal period-2 dynamic is different from the generic
VdPe limit-cycle. We investigate the range of its dy-
namic solutions and modify a single equation to lay
open to heuristic modelization of economic cycles.
Connecting a similar feedback loop in a stationary
version of the VdPe, the model of cyclical growth
also provides homoclinicity leading to chaotic be-
havior. However, with specific values from LDC,
the application displays the required promotion
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Fig. 13. Characteristic curve. The “physical” model leads
the flows around three unstable equilibria. The curve is non-
linear according to Eq. (1). Beyond s =~ 70, it is split in two
separable functions.

of new industrial frameworks in the development
process.
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